

Manoa Elementary School

Amanda Cronauer

Faculty Advisor: Dr. William Bahnfleth 14 April 2010

Mechanical Option Amanda Cronauer

Presentation Overview

•Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps •Air Source Heat Pumps System Comparison Final Recommendations

Amanda Cronauer | Mechanical Option

Project Background

P L C S C D

Project Team:

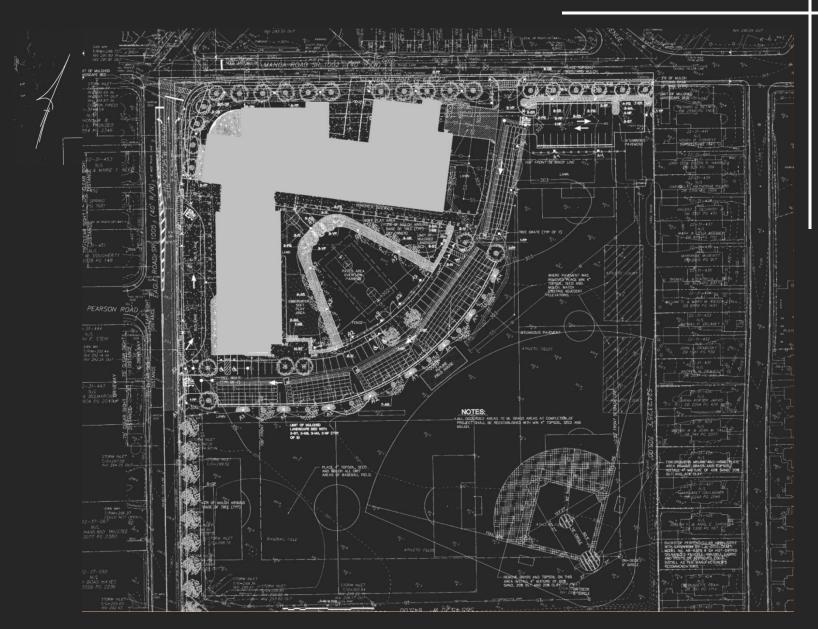
Owner: Architect: General Contractor: Structural Engineer: MEP Engineer:

Project Information:

- **Project Size:**
- Location:
- Cost:
- Stories:
- **Construction Dates: Delivery Method:**

85,355 sf Havertown, PA \$21.2 million Classroom [3], Administration [1] May 2007-November 2008 Design-Bid-Build

Haverford School District McKissick Associates Architects or: John S. McManus, Inc. er: Baker Ingram & Associates, Inc. H.F. Lenz Company



Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps Air Source Heat Pumps System Comparison Final Recommendations

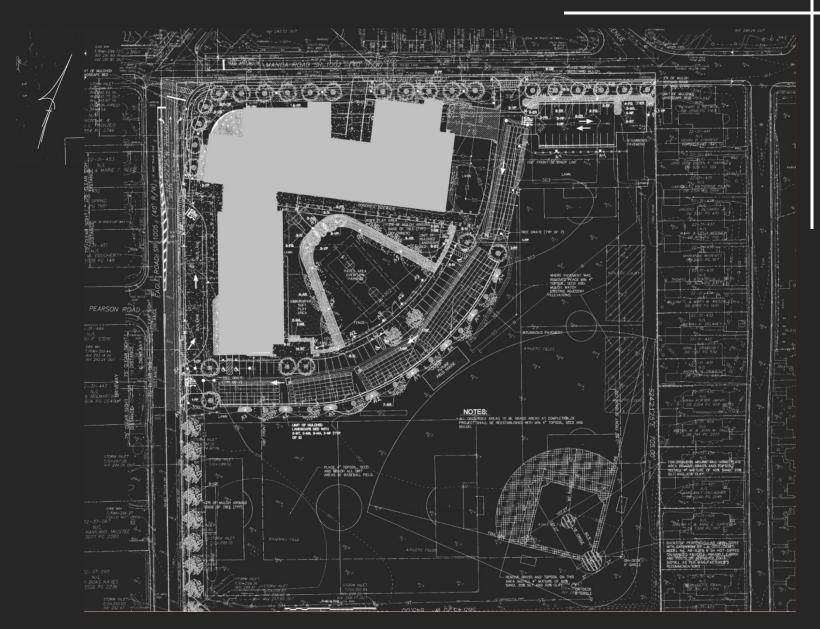
Amanda Cronauer | Mechanical Option |

Building Layout

Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps Air Source Heat Pumps System Comparison Final Recommendations

Amanda Cronauer | Mechanical Option |

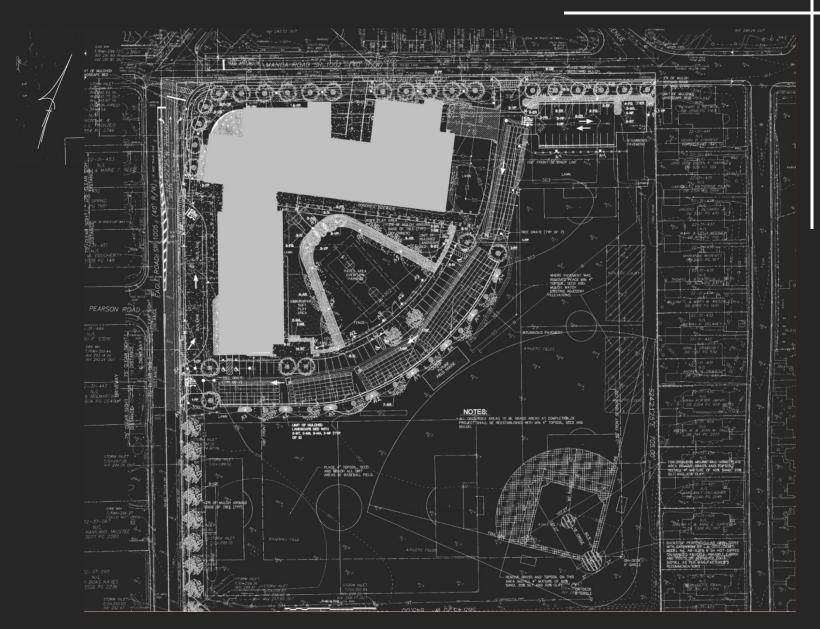
Building Layout



Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps Air Source Heat Pumps System Comparison Final Recommendations

Amanda Cronauer | Mechanical Option |

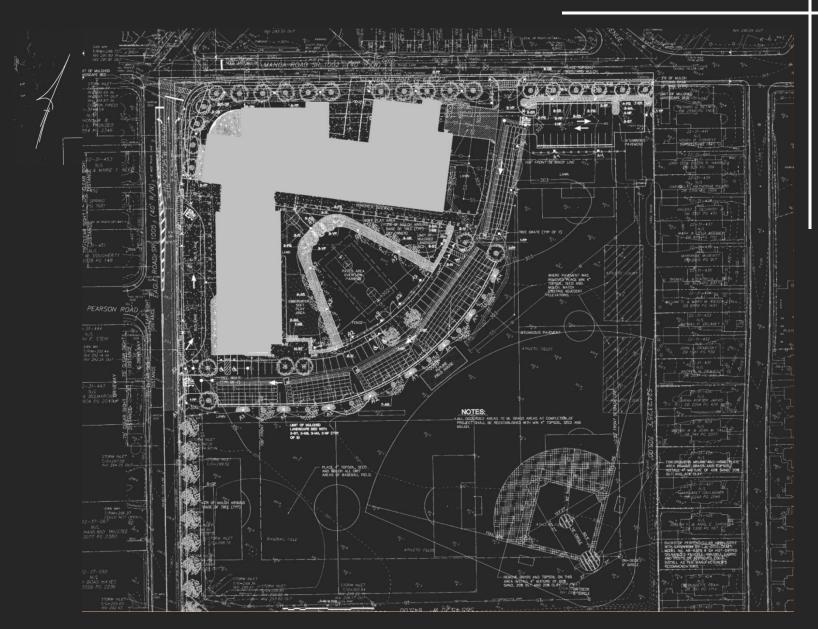
Building Layout



Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps Air Source Heat Pumps System Comparison Final Recommendations

Amanda Cronauer | Mechanical Option |

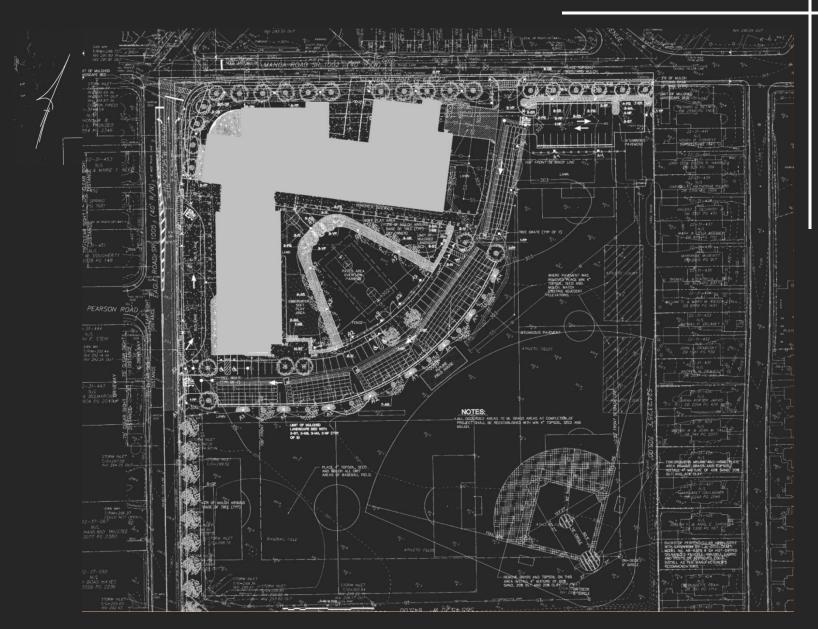
Building Layout



Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps Air Source Heat Pumps System Comparison Final Recommendations

Amanda Cronauer | Mechanical Option |

Building Layout



Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps Air Source Heat Pumps System Comparison Final Recommendations

Amanda Cronauer | Mechanical Option |

Building Layout

Existing Mechanical Summary

Design Objectives

•Alternative Descriptions

Ground Source Heat Pumps

•Air Source Heat Pumps

System Comparison

Final Recommendations

Amanda Cronauer Mechanical Option

Direct Expansion Cooling Hot Water Perimeter Heating Energy Recovery Ventilators

Existing Mechanical System

Classroom Wing:

- [2] Rooftop Variable Air Volume Units
- [2] Air Cooled Condensing Units

Rooftop VAV Unit with Energy Recovery Ventilator [AHU-3] [2] Rooftop Constant Volume Units Direct Expansion Cooling Hot Water Heating **[3]** Air Cooled Condensing Units

Spring 2010

Administration Wing:

Emissions

Comparison of Proposed System Performance

Mechanical Option Amanda Cronauer

Design Objectives

- Improve System Performance
 - Energy Consumption
 - Total System Cost

[+] Smaller

Mechanical Option Amanda Cronauer

Alternatives

Ground Source Heat Pumps:

- [+] Decentralized System
- [+] Higher System Efficiencies
- [+] Lower Greenhouse Gas Emissions
 - [-] Increased Construction Costs
 - [-] Impact of Loop on Ecosystem
- **Dedicated Outdoor Air:**
- [+] Reduce Load on Heat Pumps

[-] Utilizes Electricity

[+] Decentralized System [+] Higher System Efficiencies [+] Lower Greenhouse Gas Emissions [+] No Extensive Excavation

Spring 2010

Air Source Heat Pumps:

[-] Utilizes Electricity

Outdoor Air Unit

Amanda Cronauer **Mechanical Option**

Vertical Loop Analysis

Systems to be Replaced:

- •Series Fan Powered Boxes \rightarrow Heat Pump

Spring 2010

Vertical Loop Analysis Systems to be Replaced

- Assumptions
- Loop Sizing
- Loop Optimization
- [Construction Management
- Breadth]
- Results
- Horizontal Loop Analysis
 - Systems to be Replaced
 - Assumptions
 - Loop Sizing
 - Results

Zoning

Heat Pumps

DOAS Units

Project Background •Existing Mechanical Summary Design Objectives

•Alternative Descriptions

Ground Source Heat Pumps

•Air Source Heat Pumps

System Comparison

Final Recommendations

Amanda Cronauer **Mechanical Option**

Vertical Loop Analysis

Assumptions:

Spring 2010

Vertical Loop Analysis Systems to be Replaced

Assumptions

- Loop Sizing
- Loop Optimization
- [Construction Management
- Breadth]
- Results
- Horizontal Loop Analysis
 - Systems to be Replaced
 - Assumptions
 - Loop Sizing
 - Results

Cooling Length

Heating Length

Project Background Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps •Air Source Heat Pumps System Comparison Final Recommendations

Mechanical Option Amanda Cronauer

Vertical Loop Analysis

Loop Sizing:

$$L_{C} = \frac{q_{c}R_{a} + (q_{lc} - 3.41W_{c})(R_{b} + PLF_{m}R_{m} + R_{gm} + R_{gd}F_{sc}}{t_{g} - \frac{t_{wi} - t_{wo}}{2} - t_{p}}$$

$$L_{C} = \frac{q_{c}R_{a} + (q_{lc} - 3.41W_{c})(R_{b} + PLF_{m}R_{m} + R_{gm} + R_{gd}F_{sc}}{t_{g} - \frac{t_{wi} - t_{wo}}{2} - t_{p}}$$

Vertical Loop Analysis

Spring 2010

- Systems to be Replaced
- Assumptions

Loop Sizing

- Loop Optimization
- [Construction Management
- Breadth]
- Results

Horizontal Loop Analysis

- Systems to be Replaced
- Assumptions
- Loop Sizing
- Results

Entering Water Temperature (°F) 75

Entering Water Temperature (°l

45

Mechanical Option Amanda Cronauer

Vertical Loop Analysis

Loop Sizing:

Cooling Design Information							
	Leaving Water	Cooling Load	Total Borehole				
)	Temperature (°F)	(MBH)	Length (feet)				
	85	1,434	23,959				

	Heating Design Information						
er	Leaving Water	Heating Load	Total Borehole				
F)	Temperature (°F)	(MBH)	Length (feet)				
	35	1,153	25,052				

Spring 2010

Vertical Loop Analysis

- Systems to be Replaced
- Assumptions

Loop Sizing

- Loop Optimization
- [Construction Management
- Breadth]
- Results

Horizontal Loop Analysis

- Systems to be Replaced
- Assumptions
- Loop Sizing
- Results

Final Recommendations

Entering Water Temperature (°F

45

Amanda Cronauer Mechanical Option

Vertical Loop Analysis

Loop Sizing:

Но

	Heating Design Information						
r	Leaving Water	Heating Load	Total Borehole				
-)	Temperature (°F)	(MBH)	Length (feet)				
	35	1,153	25,052				

Spring 2010

Vertical Loop Analysis

- Systems to be Replaced
- Assumptions

Loop Sizing

- Loop Optimization
- [Construction Management
- Breadth]
- Results

orizontal Loop Analysis

- Systems to be Replaced
- Assumptions
- Loop Sizing
- Results

Meet Mechanical Load

Minimize Construction Cost

Amanda Cronauer **Mechanical Option**

Vertical Loop Analysis

Goals:

Spring 2010

■\$0.53 per linear foot 40 foot lengths ■\$4.79 per weld Borehole Driller

Project Background

•Existing Mechanical Summary

Design Objectives

•Alternative Descriptions

Ground Source Heat Pumps

Air Source Heat Pumps

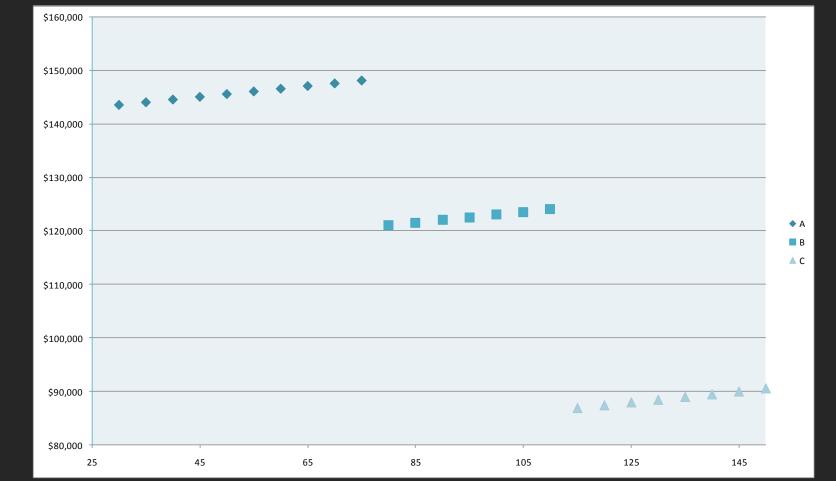
System Comparison

Final Recommendations

Mechanical Option Amanda Cronauer

Vertical Loop Analysis

Assumptions:


- •Piping \rightarrow 1" High Density Polyethylene [HDPE]

 - ■\$40.25 per day for welding machine
- •Grout \rightarrow Constant Price of \$5,937 regardless
- •Miscellaneous Site Costs \rightarrow Specified by Number of Boreholes

Earth Auger Data						
Bore Length	Rent	Output				
(feet)	(\$/day)	(feet/day)				
< 225	12190	1800				
225 ≤ Lbore ≤ 325	14840	1200				
> 325	12190	900				

Spring 2010

•Existing Mechanical Summary

Design Objectives

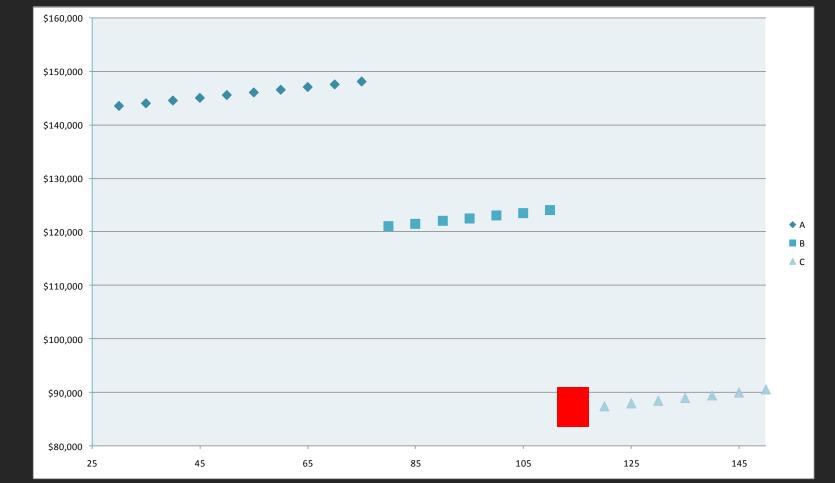
•Alternative Descriptions

Ground Source Heat Pumps

•Air Source Heat Pumps

System Comparison

Final Recommendations


Amanda Cronauer **Mechanical Option**

Vertical Loop Analysis

Spring 2010

•Existing Mechanical Summary

Design Objectives

•Alternative Descriptions

Ground Source Heat Pumps

•Air Source Heat Pumps

System Comparison

Final Recommendations

Amanda Cronauer **Mechanical Option**

Vertical Loop Analysis

Results:

Spring 2010

Final Recommendations

[115] Boreholes \$86,889 Total Installed Cost

Calculated Length	# Boreholes	Length per bore
25,052	115	218

Amanda Cronauer **Mechanical Option**

Vertical Loop Analysis

Results:

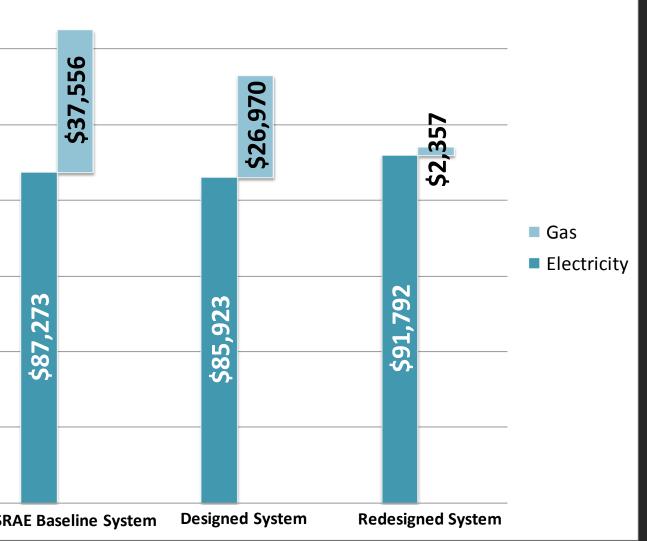
[218] feet per borehole

	Drill C: Depths Less than 225 feet									
Actual		Drillin	g			Welding		Grouting		
Length	Days	Rental Weeks	Cost	Pipe Cost	Number	Rental Days	Cost	Cost	Miscellaneous Cost	Total Cost
25,070	14	3	\$36,570	\$13,287	627	2	\$3 <i>,</i> 095	\$5 <i>,</i> 937	\$28 <i>,</i> 000	\$86,889

Spring 2010

Amanda Cronauer Mechanical Option

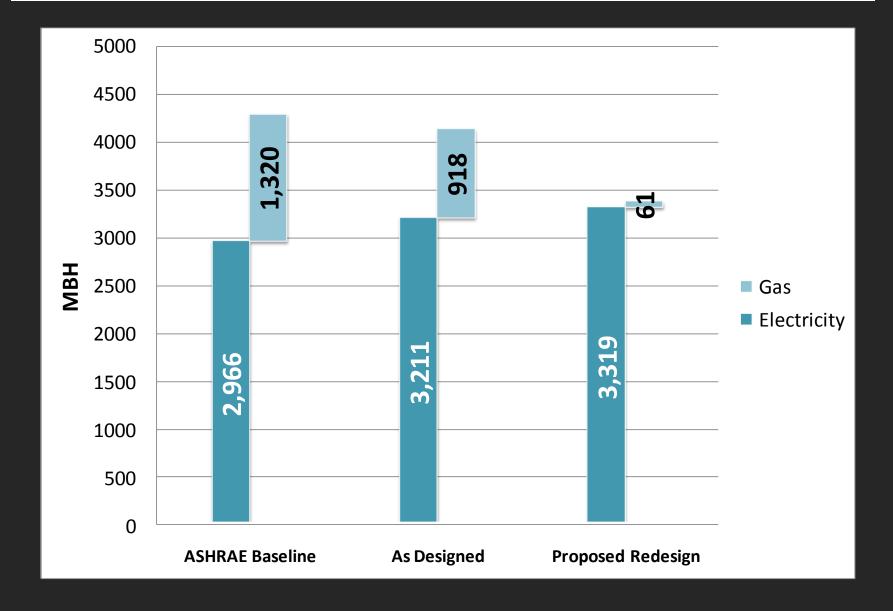
Vertical Loop Analysis


Spring 2010

\$0	AHSR
\$20,000	
\$40,000	
\$60,000	
\$80,000	
\$100,000	
\$120,000	
\$140,000	

Amanda Cronauer Mechanical Option

Vertical Loop Analysis

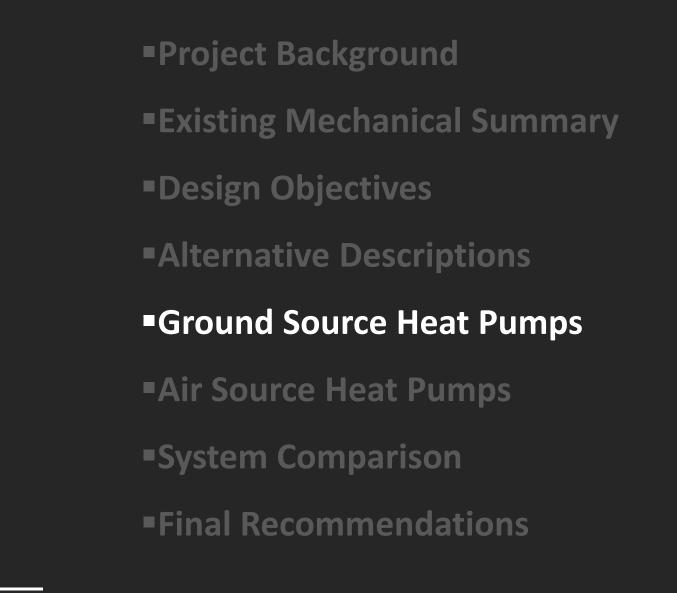

Spring 2010

Vertical Loop Analysis

- Systems to be Replaced
- Assumptions
- Loop Sizing
- Loop Optimization
- [Construction Management Breadth]

- Horizontal Loop Analysis
 - Systems to be Replaced
 - Assumptions
 - Loop Sizing
 - Results

Amanda Cronauer **Mechanical Option**


Vertical Loop Analysis

Spring 2010

Vertical Loop Analysis

- Systems to be Replaced
- Assumptions
- Loop Sizing
- Loop Optimization
- [Construction Management Breadth]

- Horizontal Loop Analysis
 - Systems to be Replaced
 - Assumptions
 - Loop Sizing
 - Results

Mechanical Option Amanda Cronauer

ASHR/ As

System

As Designed

Redesign

Vertical Loop Analysis

m Energy Savings Comparison						
	ngs Over aseline	Savings Over Designed				
%	\$	%	\$			
9.56	11,936					
24.58	30,680	19.91	18,744			

25% Reduction = /19 LEED Points [EA Credit 1]

Green	house	Gas	Emi	ssion	Data

	600	Nov	COV	Total
	CO2	NOX	SOX	Redesign Savings
	(Ibm/year)	(lbm/year)	(Ibm/year)	(lbm/year)
AE Baseline	2.02E+04	3.05E+01	1.64E+03	1.56E+04
Designed	1.59E+04	2.47E+01	1.15E+03	1.08E+04
edesign	6.15E+03	1.10E+01	1.03E+02	

Spring 2010

Vertical Loop Analysis

- Systems to be Replaced
- Assumptions
- Loop Sizing
- Loop Optimization
- [Construction Management Breadth]

- Horizontal Loop Analysis
 - Systems to be Replaced
 - Assumptions
 - Loop Sizing
 - Results

[5] Rooftop AHU's =\$280,000 ■[5] ACCU's= \$12,000 ■Utility= \$112,893

Simple Payback Period: 10.76 years

Project Background •Existing Mechanical Summary

Design Objectives

•Alternative Descriptions

Ground Source Heat Pumps

•Air Source Heat Pumps

System Comparison

Final Recommendations

Amanda Cronauer **Mechanical Option**

Vertical Loop Analysis

Simple Payback Period:

Design:

Redesign:

•[67] Heat Pumps= \$420,050 •[5] DOAS Units= \$82,042 •Vertical Loop= \$86,889 •Utility=\$94,129

Spring 2010

Vertical Loop Analysis

- Systems to be Replaced
- Assumptions
- Loop Sizing
- Loop Optimization
- [Construction Management Breadth]

- Horizontal Loop Analysis
 - Systems to be Replaced
 - Assumptions
 - Loop Sizing
 - Results

Project Background •Existing Mechanical Summary Design Objectives •Alternative Descriptions

Ground Source Heat Pumps

•Air Source Heat Pumps

System Comparison

Final Recommendations

[5] Rooftop AHU's =\$280,000 ■[5] ACCU's= \$12,000 •Utility= \$112,893 Ductwork= \$319,850

Amanda Cronauer **Mechanical Option**

Vertical Loop Analysis

Simple Payback Period:

Design:

Redesign:

- •[67] Heat Pumps= \$420,050 •[5] DOAS Units= \$82,042 •Vertical Loop= \$86,889 •Ductwork= \$74,531
- •Utility= \$94,129

Simple Payback Period: 1.2 years

Spring 2010

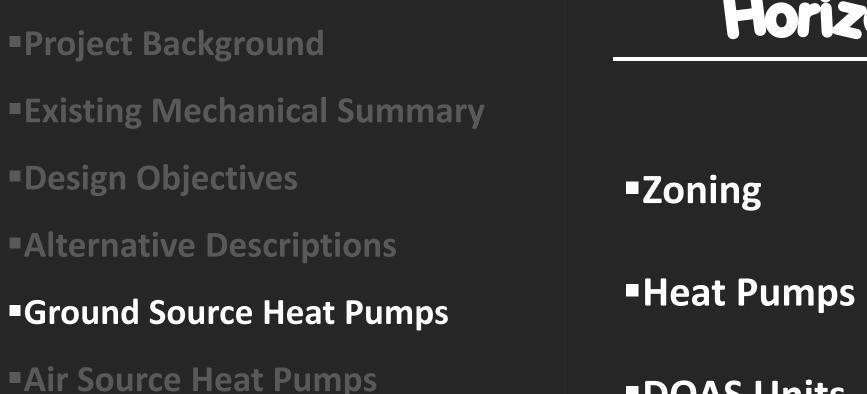
Vertical Loop Analysis

- Systems to be Replaced
- Assumptions
- Loop Sizing
- Loop Optimization
- [Construction Management Breadth]

- Horizontal Loop Analysis
 - Systems to be Replaced
 - Assumptions
 - Loop Sizing
 - Results

•Series Fan Powered Boxes \rightarrow Heat Pump

•Rooftop Air Handling Units \rightarrow Dedicated **Outdoor Air Unit**


Amanda Cronauer **Mechanical Option**

Horizontal Loop Analysis

Systems to be Replaced:

Systems to be Replaced Assumptions Loop Sizing Loop Optimization [Construction Management Breadth] Results Systems to be Replaced Assumptions Loop Sizing Results

Vertical Loop Analysis Horizontal Loop Analysis

System Comparison

Final Recommendations

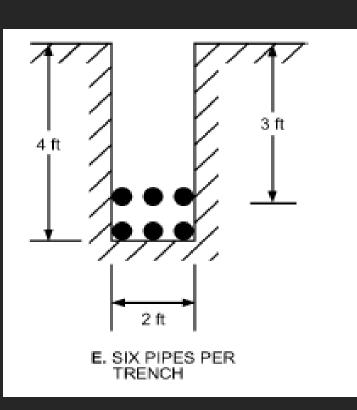
DOAS Units

Amanda Cronauer Mechanical Option

Horizontal Loop Analysis

Assumptions:

Spring 2010


Amanda Cronauer Mechanical Option

Sizing Method Applicable

Horizontal, 6-Pipe Coil

Ground Temperature

Horizontal Loop Analysis

Assumptions:

Systems to be Replaced Assumptions Loop Sizing Loop Optimization [Construction Management Breadth] Results Systems to be Replaced Assumptions Loop Sizing Results

Vertical Loop Analysis Horizontal Loop Analysis

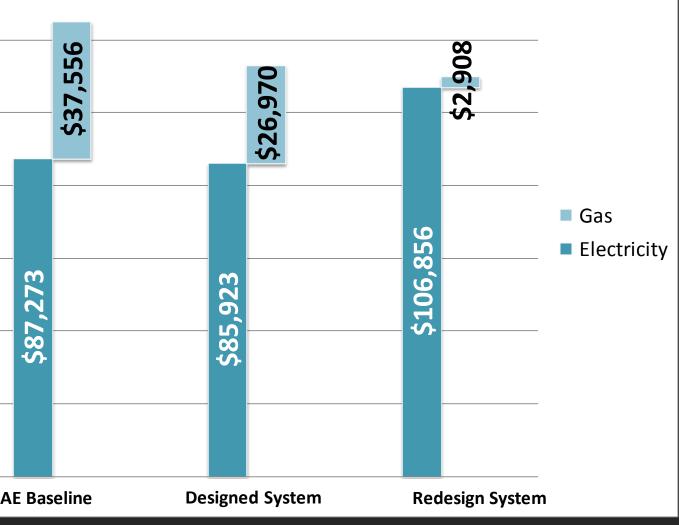
Amanda Cronauer **Mechanical Option**

Horizontal Loop Analysis

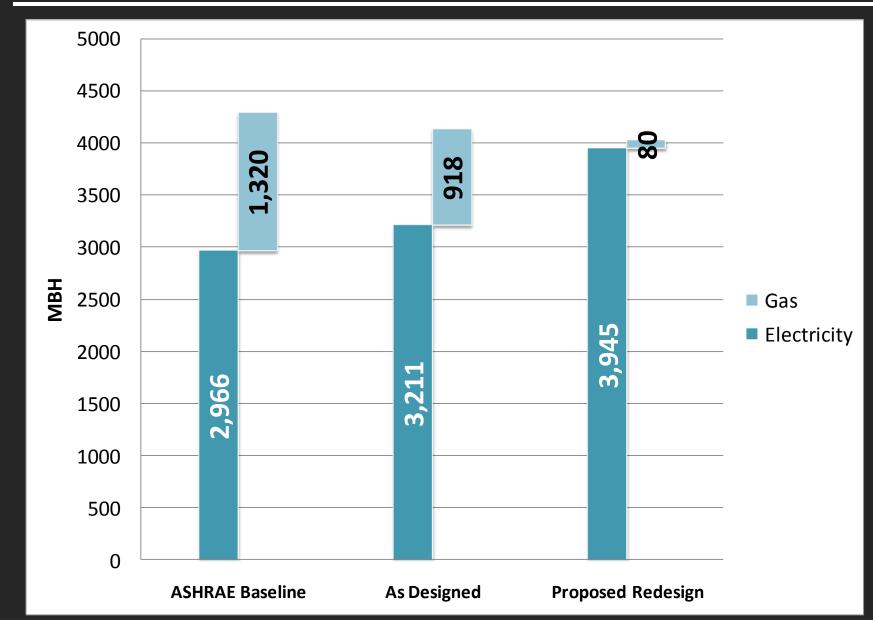
Results:

- [150] foot per ton loop recommended
- [17,925] feet of length required

Systems to be Replaced Assumptions Loop Sizing Loop Optimization [Construction Management Breadth] Results Systems to be Replaced Assumptions Loop Sizing Results

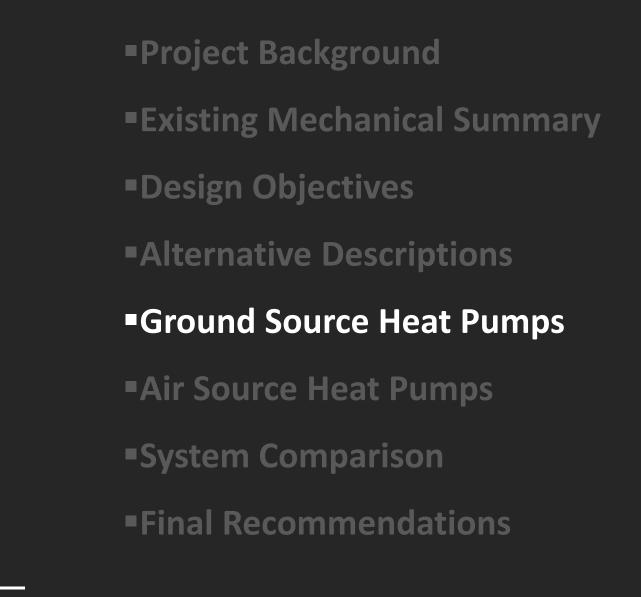

Vertical Loop Analysis Horizontal Loop Analysis

\$20,000	AHSRA
\$20,000	
\$40,000	
\$60,000	
\$80,000	
\$100,000	
\$120,000	
\$140,000	


Amanda Cronauer Mechanical Option

Horizontal Loop Analysis

Spring 2010



Amanda Cronauer Mechanical Option

Horizontal Loop Analysis

Spring 2010

Mechanical Option Amanda Cronauer

System Energy Savings Comparison					
	Savings Over Baseline		Savings Over Designed		1
	%	\$	%	\$	L
As Designed	9.56	11,936			
Redesign	12.07	15,065	2.85	3,129	

ASHRA As D Rec

Horizontal Loop Analysis

12% Reduction = **1**/19 LEED Point [EA Credit 1]

Greenhouse Gas Emission Data					
	CO2	NOX	SOX	Total Redesign Savings	
	(Ibm/year)	(lbm/year)	(Ibm/year)	(lbm/year)	
E Baseline	2.02E+04	3.05E+01	1.64E+03	1.43E+04	
Designed	1.59E+04	2.47E+01	1.15E+03	9.55E+03	
design	7.40E+03	1.31E+01	1.31E+02		

Spring 2010

Final Recommendations

[5] Rooftop AHU's =\$280,000 ■[5] ACCU's= \$12,000 •Utility= \$112,893 Ductwork= \$319,850

Amanda Cronauer **Mechanical Option**

Horizontal Loop Analysis

Simple Payback Period:

Design:

Redesign:

- •[67] Heat Pumps= \$420,050 •[5] DOAS Units= \$82,042 •Horizontal Loop= \$76,898 •Ductwork= \$74,531
- •Utility= \$109,764

Simple Payback Period: 0.95 years

Spring 2010

Project Background •Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps Air Source Heat Pumps

System Comparison

Final Recommendations

Amanda Cronauer **Mechanical Option**

Air Source Heat Pumps

Outdoor Air Unit

Systems to be Replaced:

- •Series Fan Powered Boxes \rightarrow Heat Pump
- •Rooftop Air Handling Units \rightarrow Dedicated

Spring 2010

Analysis Systems to be Replaced Assumptions Results

Project Background •Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps Air Source Heat Pumps

System Comparison

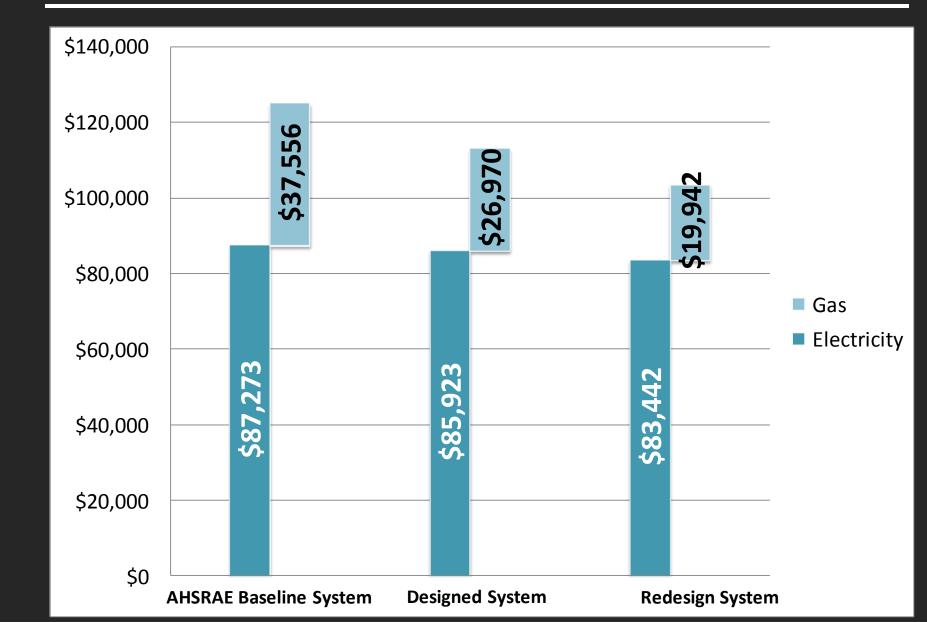
Final Recommendations

Zoning

Heat Pumps

DOAS Units

Amanda Cronauer Mechanical Option

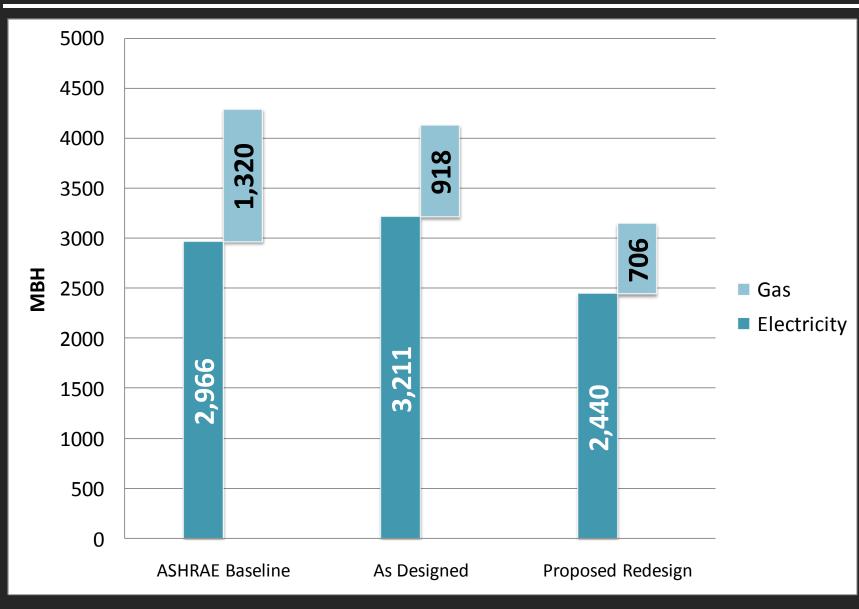

Air Source Heat Pumps

Assumptions:

Spring 2010

Analysis Systems to be Replaced Assumptions Results

Mechanical Option Amanda Cronauer


Air Source Heat Pumps

Spring 2010

Analysis

Systems to be Replaced Assumptions Results

Mechanical Option Amanda Cronauer

Air Source Heat Pumps

Spring 2010

Analysis

Systems to be Replaced Assumptions Results

As Designed 17 Redesign

> ASHRA As D Re

Mechanical Option Amanda Cronauer

Air Source Heat Pumps

Energy Savings Comparison					
Savings Over Baseline		Savings Over Designed			
%	\$	%	\$		
.56	11,936				
7.18	21,445	9.20	9,509		

17% Reduction = **3/19 LEED Points** [EA Credit 1]

Green	house	Gas	Emission	Data

				Total
	CO2	NOX	SOX	Redesign
				Savings
	(lbm/year)	(lbm/year)	(Ibm/year)	(Ibm/year)
AE Baseline	2.02E+04	3.05E+01	1.64E+03	8.75E+03
Designed	1.59E+04	2.47E+01	1.15E+03	4.00E+03
edesign	1.22E+04	1.89E+01	8.82E+02	

Analysis

Systems to be Replaced Assumptions Results

Project Background •Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps

Air Source Heat Pumps

System Comparison

Final Recommendations

[5] Rooftop AHU's =\$280,000 ■[5] ACCU's= \$12,000 •Utility= \$112,893 Ductwork= \$319,850

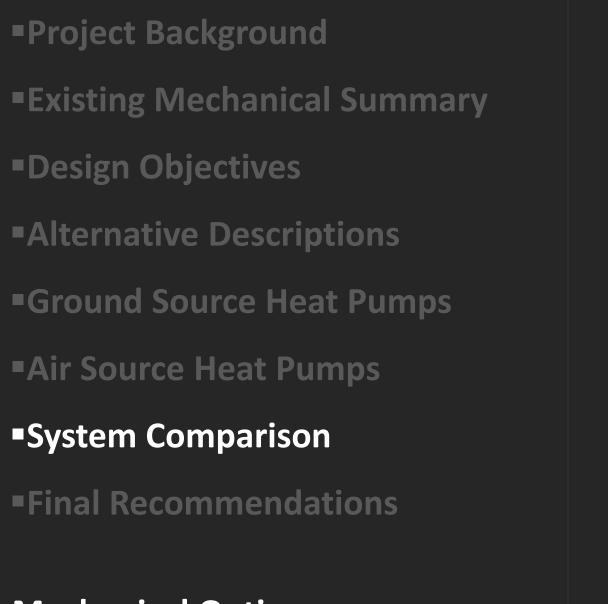
Amanda Cronauer **Mechanical Option**

Air Source Heat Pumps

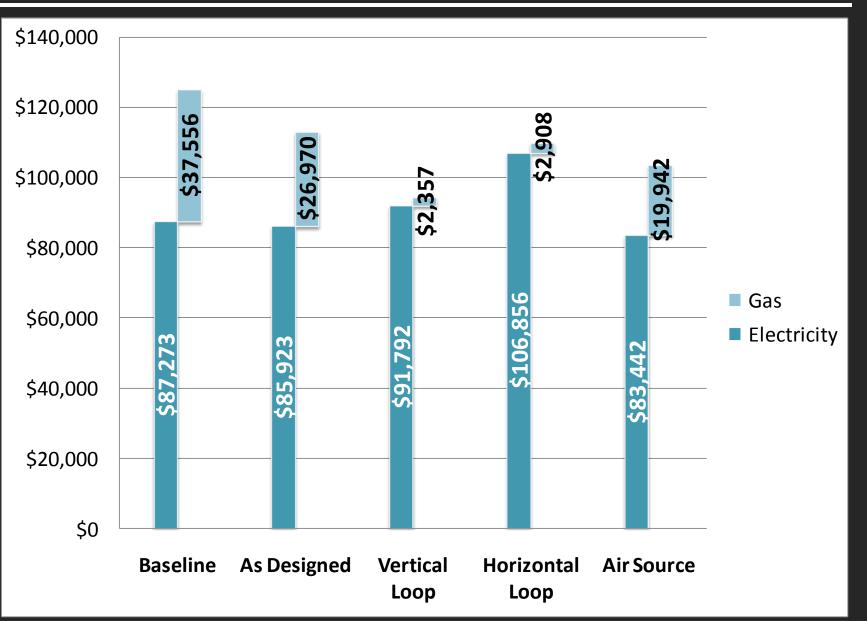
Simple Payback Period:

Design:

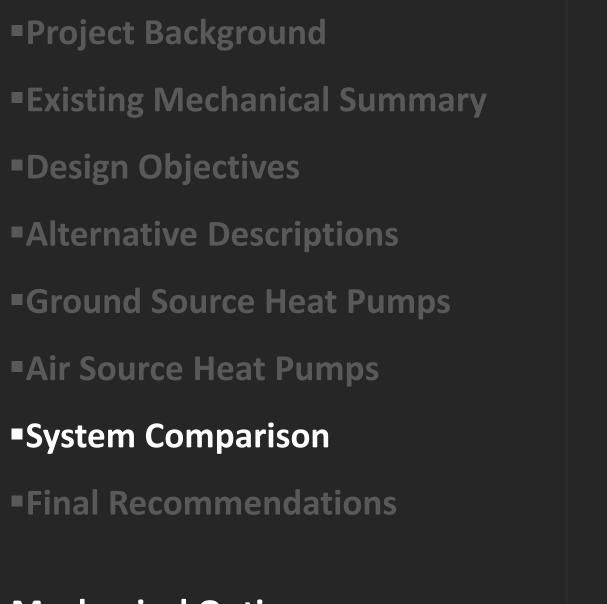
Redesign:

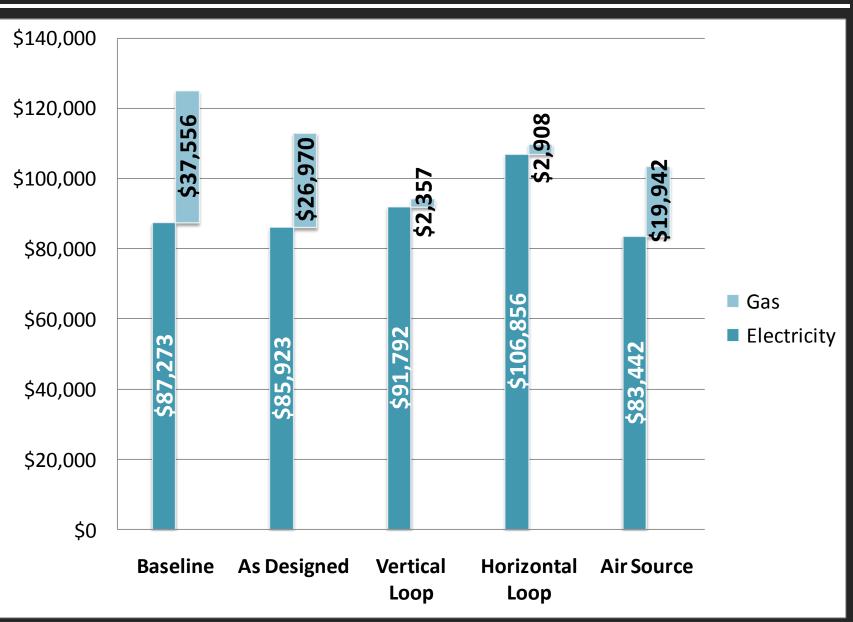

- •[67] Heat Pumps= \$211,403 •[5] DOAS Units= \$83,042 •Ductwork= \$74,531
- •Utility= \$103,384

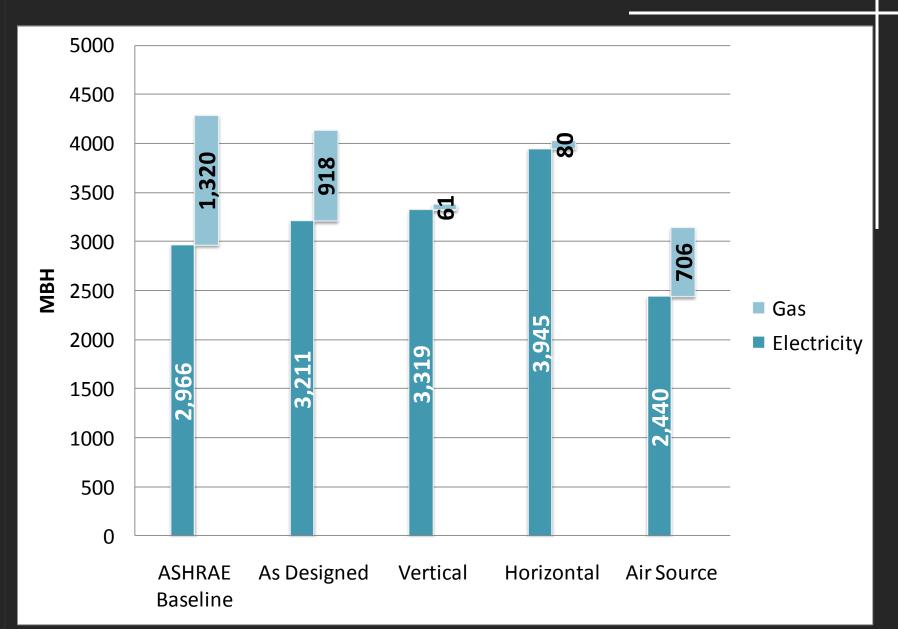
Simple Payback Period: 0.65 years


Spring 2010

Analysis


Systems to be Replaced Assumptions Results


Amanda Cronauer | Mechanical Option


System Comparison

Amanda Cronauer | Mechanical Option

System Comparison

Project Background •Existing Mechanical Summary Design Objectives •Alternative Descriptions Ground Source Heat Pumps •Air Source Heat Pumps

System Comparison

Final Recommendations

Amanda Cronauer Mechanical Option ASHRAE Baseline As Designed Vertical Loop Horizontal Loop Air Source

6.15E+03

7.40E+03

1.22E+04

System Comparison

	Greenhouse Gas Emission Data						
	CO2	NOX SOX		Total Emissions			
	(Ibm/year)	(Ibm/year)	(Ibm/year)	(lbm/year)			
е	2.02E+04	3.05E+01	1.64E+03	2.18E+04			
	1.59E+04	2.47E+01	1.15E+03	1.71E+04			

1.10E+01

1.31E+01

1.89E+01

1.03E+02 6.26E+03

1.31E+02 7.54E+03

8.82E+02 1.31E+04

•Vertical Loop GSHP = [1.2] years

•Horizontal Loop GSHP = [0.95] years

•Air Source Heat Pump= [0.65] years

Spring 2010

Simple Payback Period:

Final Recommendations

Air Source Heat Pump

Vertical Ground Source Heat Pump

Amanda Cronauer **Mechanical Option**

Final Recommendations

Emissions and Fuel Consumption: Vertical Ground Source Heat Pump

Lowest First Cost:

Air Source Heat Pump

Fastest Potential Payback:

LEED Points:

Special Thanks To:

Paul Cronauer, H.F. Lenz Contact
Verne McKissick, McKissick Architects Contact
Dr. Bahnfleth, Faculty Advisor
Penn State Architectural Engineering Mechanical Faculty
Family and Friends for all their support
Fellow AE Students
Jonah, moral support

Amanda Cronauer | Mechanical Option

Questions